Polymerase engineering: towards the encoded synthesis of unnatural biopolymers.

نویسندگان

  • David Loakes
  • Philipp Holliger
چکیده

DNA is not only a repository of genetic information for life, it is also a unique polymer with remarkable properties: it associates according to well-defined rules, it can be assembled into diverse nanostructures of defined geometry, it can be evolved to bind ligands and catalyse chemical reactions and it can serve as a supramolecular scaffold to arrange chemical groups in space. However, its chemical makeup is rather uniform and the physicochemical properties of the four canonical bases only span a narrow range. Much wider chemical diversity is accessible through solid-phase synthesis but oligomers are limited to <100 nucleotides and variations in chemistry can usually not be replicated and thus are not amenable to evolution. Recent advances in nucleic acid chemistry and polymerase engineering promise to bring the synthesis, replication and ultimately evolution of nucleic acid polymers with greatly expanded chemical diversity within our reach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Nucleation Mechanism Recognition of BaSO4 Nanoparticle in the Presence of Biopolymers

A major portion of BaSO4 is used as drilling fluid additives in the presence of some biopolymers such as starch and PAC (Polyanionic Cellulose) as filtration control and viscosifier. BaSO4 nanoparticle was synthesized in the presence of these applicable polymers with precipitation method by using BaS produced from carbothermal method and Na2SO4. Synthesized nanoparticles size and morphology wer...

متن کامل

Synthesis of biopolymers: proteins, polyesters, polysaccharides and polynucleotides

The synthesis of proteins, polyesters, polysaccharides and polynucleotides can be adapted to produce new macromolecular materials. Proteins of designed sequence, and with specific chemical functions, conferred by the incorporation of unnatural amino acids, have been prepared in genetically engineered bacteria. Polyesters, useful as biodegradable thermoplastics, have been made in bacterial hosts...

متن کامل

Natural Biopolymers is an Efficient Catalyst for the Synthesis of 1,3,5-Trisubstituted Pyrazoles

Cellulose sulfuric acid is an efficient metal-free catalyst for the synthesis of 1,3,5-trisubstituted pyrazoles via the condensation of 1,3-diketones and hydrazines. The reaction was carried out in Solvent-free condition at room temperature and the products were isolated in good to excellent yields. Mild reaction conditions, as well as ease of operation and workup are some advantages of the pro...

متن کامل

Enzymatic aminoacylation of tRNA with unnatural amino acids.

The biochemical flexibility of the cellular translation apparatus offers, in principle, a simple route to the synthesis of drug-like modified peptides and novel biopolymers. However, only approximately 75 unnatural building blocks are known to be fully compatible with enzymatic tRNA acylation and subsequent ribosomal synthesis of modified peptides. Although the translation system can reject sub...

متن کامل

Synthesis and polymerase chain reaction amplification of DNA strands containing an unnatural triazole linkage.

DNA strands containing an unnatural T-triazole-T linkage have been synthesized by click DNA ligation between oligonucleotides with 3'-AZT and 5'-propargylamido dT and amplified efficiently by polymerase chain reaction (PCR) using several different polymerases. DNA sequencing of PCR amplicons and clones in two different sequence contexts revealed the presence of a single thymidine at the ligatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical communications

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2009